1,154 research outputs found

    Whole genome sequencing of experimental hybrids supports meiosis-like sexual recombination in Leishmania

    Get PDF
    Hybrid genotypes have been repeatedly described among natural isolates of Leishmania, and the recovery of experimental hybrids from sand flies co-infected with different strains or species of Leishmania has formally demonstrated that members of the genus possess the machinery for genetic exchange. As neither gamete stages nor cell fusion events have been directly observed during parasite development in the vector, we have relied on a classical genetic analysis to determine if Leishmania has a true sexual cycle. Here, we used whole genome sequencing to follow the chromosomal inheritance patterns of experimental hybrids generated within and between different strains of L. major and L. infantum. We also generated and sequenced the first experimental hybrids in L. tropica. We found that in each case the parental somy and allele contributions matched the inheritance patterns expected under meiosis 97–99% of the time. The hybrids were equivalent to F1 progeny, heterozygous throughout most of the genome for the markers that were homozygous and different between the parents. Rare, non-Mendelian patterns of chromosomal inheritance were observed, including a gain or loss of somy, and loss of heterozygosity, that likely arose during meiosis or during mitotic divisions of the progeny clones in the fly or culture. While the interspecies hybrids appeared to be sterile, the intraspecies hybrids were able to produce backcross and outcross progeny. Analysis of 5 backcross and outcross progeny clones generated from an L. major F1 hybrid, as well as 17 progeny clones generated from backcrosses involving a natural hybrid of L. tropica, revealed genome wide patterns of recombination, demonstrating that classical crossing over occurs at meiosis, and allowed us to construct the first physical and genetic maps in Leishmania. Altogether, the findings provide strong evidence for meiosis-like sexual recombination in Leishmania, presenting clear opportunities for forward genetic analysis and positional cloning of important genes.</div

    Persistence of Quantum Information

    Get PDF
    There is an increasing interest in the role of macroscopic environments to our understanding of the basics of quantum theory. The knowledge of the implications of the quantum theory to other theories, especially to the statistical mechanics and the domain of validity has captivated scientists from the beginning of quantum description. In such a context, the presence of an environment is commonly thought as entanglement, decohering and mixing properties of quantum system. Generically, an environment is assumed to be a noisy reservoir or a heat bath. Whereas in common interpretation of statistical mechanics the heat bath is unspecified, in quantum systems a heat bath can also provide an indirect interaction between otherwise totally decoupled subsystems and consequently a means to entangle them \cite{cdkl,dvclp,bfp}. In simple example for the entanglement between two qubits due to the interaction with a common heat bath has been explicitly shown in \cite{b}. Whereas in that paper the bath is described by a collection of harmonic oscillators, it seems to be more reasonable to specify the bath by stochastic forces represented by stochastic fields. From a more general point of view we expect the bath should be better described in a stochastic manner and not by deterministic forces. In the present paper we consider a two level system (qubits) which are able to perform flip processes by a coupling to classical stochastic fields. Thus we bridge the gap between quantum and classical probability theory. This problem is related to many other questions of quantum optics and quantum electronics where quantum statistical aspects arising from the intrinsic quantum character of the system while the possible time-dependence of system parameters may be interpreted as the influence of classical thermal fluctuations.Comment: 5 page

    Optimum power loads for elite boxers: case study with the Brazilian national olympic team

    Get PDF
    The purpose of this case study was to examine the effects of a resistance-training program based on the optimum power loads (OPL) method on neuromuscular performance of Olympic boxing athletes during preparation for the Rio-2016 Olympic Games. Twelve elite amateur boxers from the Brazilian National Olympic Team participated in this study. Athletes were assessed at four time-points, over two consecutive competitive seasons. In the first season (considered as "control period"), the athletes executed a non-controlled strength-power training program for 10 weeks. In the second season (a seven-week experimental period), the elite boxers performed 14 power-oriented training sessions, comprising bench press (BP) and jump squat (JS) exercises at the OPL. Maximum bar-power output in BP and JS exercises was measured pre and post both training phases. Magnitude-based inferences were used to compare changes in pre and post training tests. Bar-power outputs increased meaningfully in both BP (+8%) and JS (+7%) exercises after the OPL training program. In contrast, after the control period, no worthwhile improvements were observed in the variables tested. Based on the findings of this study, highly trained boxers might benefit from the use of a training scheme based on OPL

    Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus.

    Get PDF
    HIV-1 entry can be inhibited by soluble peptides from the gp41 heptad repeat-2 (HR2) domain that interfere with formation of the 6-helix bundle during fusion. Inhibition has also been seen when these peptides are conjugated to anchoring molecules and over-expressed on the cell surface. We hypothesized that potent anti-HIV activity could be achieved if a 34 amino acid peptide from HR2 (C34) were brought to the site of virus-cell interactions by conjugation to the amino termini of HIV-1 coreceptors CCR5 or CXCR4. C34-conjugated coreceptors were expressed on the surface of T cell lines and primary CD4 T cells, retained the ability to mediate chemotaxis in response to cognate chemokines, and were highly resistant to HIV-1 utilization for entry. Notably, C34-conjugated CCR5 and CXCR4 each exhibited potent and broad inhibition of HIV-1 isolates from diverse clades irrespective of tropism (i.e., each could inhibit R5, X4 and dual-tropic isolates). This inhibition was highly specific and dependent on positioning of the peptide, as HIV-1 infection was poorly inhibited when C34 was conjugated to the amino terminus of CD4. C34-conjugated coreceptors could also inhibit HIV-1 isolates that were resistant to the soluble HR2 peptide inhibitor, enfuvirtide. When introduced into primary cells, CD4 T cells expressing C34-conjugated coreceptors exhibited physiologic responses to T cell activation while inhibiting diverse HIV-1 isolates, and cells containing C34-conjugated CXCR4 expanded during HIV-1 infection in vitro and in a humanized mouse model. Notably, the C34-conjugated peptide exerted greater HIV-1 inhibition when conjugated to CXCR4 than to CCR5. Thus, antiviral effects of HR2 peptides can be specifically directed to the site of viral entry where they provide potent and broad inhibition of HIV-1. This approach to engineer HIV-1 resistance in functional CD4 T cells may provide a novel cell-based therapeutic for controlling HIV infection in humans

    Promising development from translational or perhaps anti-translational research in breast cancer

    Get PDF
    Background: A great deal of the public’s money has been spent on cancer research but demonstrable benefits to patients have not been proportionate. We are a group of scientists and physicians who several decades ago were confronted with bimodal relapse patterns among early stage breast cancer patients who were treated by mastectomy. Since the bimodal pattern was not explainable with the then well-accepted continuous growth model, we proposed that metastatic disease was mostly inactive before surgery but was driven into growth somehow by surgery. Most relapses in breast cancer would fall into the surgery-induced growth category thus it was highly important to understand the ramifications of this process and how it may be curtailed. With this hypothesis, we have been able to explain a wide variety of clinical observations including why mammography is less effective for women age 40–49 than it is for women age 50–59, why adjuvant chemotherapy is most effective for premenopausal women with positive lymph nodes, and why there is a racial disparity in outcome. Methods: We have been diligently looking for new clinical or laboratory information that could provide a connection or correlation between the bimodal relapse pattern and some clinical factor or interventional action and perhaps lead us towards methods to prevent surgery-initiated tumor activity. Results: A recent development occurred when a retrospective study appeared in an anesthesiology journal that suggested the perioperative NSAID analgesic ketorolac seems to reduce early relapses following mastectomy. Collaborating with these anesthesiologists to understand this effect, we independently re-examined and updated their data and, in search of a mechanism, focused in on the transient systemic inflammation that follows surgery to remove a primary tumor. We have arrived at several possible explanations ranging from mechanical to biological that suggest the relapses avoided in the early years do not show up later. Conclusions: We present the possibility that a nontoxic and low cost intervention could prevent early relapses. It may be that preventing systemic inflammation post surgery will prevent early relapses. This could be controlled by the surgical anesthesiologist’s choice of analgesic drugs. This development needs to be confirmed in a randomized controlled clinical trial and we have identified triple negative breast cancer as the ideal subset with which to test this. If successful, this would be relatively easy to implement in developing as well as developed countries and would be an important translational result

    A preexisting rare PIK3CA e545k subpopulation confers clinical resistance to MEK plus CDK4/6 inhibition in NRAS melanoma and is dependent on S6K1 signaling

    Get PDF
    Combined MEK and CDK4/6 inhibition (MEKi + CDK4i) has shown promising clinical outcomes in patients with NRAS- mutant melanoma. Here, we interrogated longitudinal biopsies from a patient who initially responded to MEKi + CDK4i therapy but subsequently developed resistance. Whole-exome sequencing and functional validation identified an acquired PIK3CA E545K mutation as conferring drug resistance. We demonstrate that PIK3CA E545K preexisted in a rare subpopulation that was missed by both clinical and research testing, but was revealed upon multiregion sampling due to PIK3CA E545K being nonuniformly distributed. This resistant population rapidly expanded after the initiation of MEKi + CDK4i therapy and persisted in all successive samples even after immune checkpoint therapy and distant metastasis. Functional studies identified activated S6K1 as both a key marker and specific therapeutic vulnerability downstream of PIK3CA E545K -induced resistance. These results demonstrate that difficult-to-detect preexisting resistance mutations may exist more often than previously appreciated and also posit S6K1 as a common downstream therapeutic nexus for the MAPK, CDK4/6, and PI3K pathways. SIGNIFICANCE: We report the first characterization of clinical acquired resistance to MEKi + CDK4i, identifying a rare preexisting PIK3CA E545K subpopulation that expands upon therapy and exhibits drug resistance. We suggest that single-region pretreatment biopsy is insufficient to detect rare, spatially segregated drug-resistant subclones. Inhibition of S6K1 is able to resensitize PIK3CA E545K -expressing NRAS-mutant melanoma cells to MEKi + CDK4i. © 2018 AAC
    • …
    corecore